Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Ann Clin Lab Sci ; 52(4): 651-662, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2045492

ABSTRACT

OBJECTIVE: Estimating the response of different population cohorts to new SARS-CoV-2 variants is important to customize measures of control. Our goal was to evaluate how antibodies from sera of infected and vaccinated people recognize antigens expressed by different SARS-CoV-2 variants. METHODS: We compared sera from vaccinated donors and four patient/donor cohorts: Sera from critically ill patients collected 2-7 days and more than 10 days after admission to an intensive care unit, a NIBSC/WHO reference panel of SARS-CoV-2 positive individuals, and ambulatory or hospitalized (but not critically ill) positive donors. Samples were tested with an anti-SARS-CoV-2 ELISA kit coated with SARS-CoV-2 RBD recombinant antigens including mutations present in eleven of the most widespread variants. RESULTS: Sera from vaccinated individuals exhibited higher antibody binding (P<0.001) than sera from infected (but not critically ill) individuals when tested against the wild type (WT) and each of 11 variants' receptor binding domain (RBD). Antibodies' binding to the SARS-CoV-2 antigens of at least 6 variants, including Variants of Concern (VOCs), was reduced in comparison to the WT in vaccinated and non-critically ill convalescence individuals. CONCLUSION: Understanding differences between population cohorts in the antibody titers against WT vs variant RBD antigens can help design variant-specific immunoassays for surveillance and evaluation of the epidemiology of new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Protein Binding , SARS-CoV-2/genetics
2.
Pathophysiology ; 28(2): 212-223, 2021 May 17.
Article in English | MEDLINE | ID: covidwho-1234794

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global health care emergency. Anti-SARS-CoV-2 serological profiling of critically ill COVID-19 patients was performed to determine their humoral response. Blood was collected from critically ill ICU patients, either COVID-19 positive (+) or COVID-19 negative (-), to measure anti-SARS-CoV-2 immunoglobulins: IgM; IgA; IgG; and Total Ig (combined IgM/IgA/IgG). Cohorts were similar, with the exception that COVID-19+ patients had a greater body mass indexes, developed bilateral pneumonias more frequently and suffered increased hypoxia when compared to COVID-19- patients (p < 0.05). The mortality rate for COVID-19+ patients was 50%. COVID-19 status could be determined by anti-SARS-CoV-2 serological responses with excellent classification accuracies on ICU day 1 (89%); ICU day 3 (96%); and ICU days 7 and 10 (100%). The importance of each Ig isotype for determining COVID-19 status on combined ICU days 1 and 3 was: Total Ig, 43%; IgM, 27%; IgA, 24% and IgG, 6%. Peak serological responses for each Ig isotype occurred on different ICU days (IgM day 13 > IgA day 17 > IgG persistently increased), with the Total Ig peaking at approximately ICU day 18. Those COVID-19+ patients who died had earlier or similar peaks in IgA and Total Ig in their ICU stay when compared to patients who survived (p < 0.005). Critically ill COVID-19 patients exhibit anti-SARS-CoV-2 serological responses, including those COVID-19 patients who ultimately died, suggesting that blunted serological responses did not contribute to mortality. Serological profiling of critically ill COVID-19 patients may aid disease surveillance, patient cohorting and help guide antibody therapies such as convalescent plasma.

SELECTION OF CITATIONS
SEARCH DETAIL